Tampilkan postingan dengan label AMT. Tampilkan semua postingan
Tampilkan postingan dengan label AMT. Tampilkan semua postingan

07 November 2014

Pengertian Fraud

Pengertian Fraud

Anda percaya kepada seseorang, apakah Anda berprasangka buruk terhadap orang tersebut? Tidak. Nah, bagi orang kepercayaan yang tidak pantas dipercaya akan memanfaatkan kepercayaan Anda untuk menutupi dan melancarkan aksi kejahatan mereka. Trus, apakah tidak boleh mempercayai orang lain? Boleh, tapi yakinkan bahwa kepercayaan Anda ada pada orang yang tepat. Kuncinya adalah: Jangan gampang percaya! Disini kami akan menjelaskan penipuan yang terjadi kebanyakan di dunia maya.
Fraud merupakan kejahatan manipulasi informasi dengan tujuan mengeruk keuntungan yang sebesar-besarnya. Biasanya kejahatan yang dilakukan adalah memanipulasi informasi keuangan. Sebagai contoh adanya situs lelang fiktif. Melibatkan berbagai macam aktivitas yang berkaitan dengan Fraud kartu kredit. Cardingmuncul ketika seseorang yang bukan pemilik kartu kredit menggunakan kartu kredit tersebut secara melawan hukum. 
Fraud adalah proses pembuatan, beradaptasi, meniru atau benda, statistik, atau dokumen-dokumen , dengan maksud untuk menipu. Kejahatan yang serupa dengan penipuan adalah kejahatan memperdaya yang lain, termasuk melalui penggunaan benda yang diperoleh melalui pemalsuan. Menyalin, penganda, dan mereproduksi tidak dianggap sebagai pemalsuan, meski pun mungkin mereka nanti dapat menjadi pemalsuan selama mengetahui dan berkeinginan untuk tidak dipublikasikan. Dalam hal penempaan uang atau mata uang itu lebih sering disebut pemalsuan. Barang konsumen tetapi juga meniru ketika mereka tidak diproduksi atau yang dihasilkan oleh manufaktur atau produsen diberikan pada label atau merek dagang tersebut ditandai oleh simbol. Ketika objek-adakan adalah catatan atau dokumen ini sering disebut sebagai dokumen palsu.
Fraud juga diartikan dengan Penipuan, yang memiliki arti keliru yang disengaja yang menyebabkan seseorang atau bisnis menderita kerusakan, sering dalam bentuk kerugian moneter. Semua elemen ini biasanya diperlukan untuk tindakan yang harus dipertimbangkan penipuan, jika seseorang berbohong tentang namanya, misalnya, tidak akan penipuan kecuali dengan demikian, orang yang menyebabkan orang lain kehilangan uang atau menderita beberapa kerusakan lainnya. Ada berbagai jenis penipuan, dari pencurian identitas, penipuan asuransi untuk memalsukan informasi pajak, dan membuat pernyataan palsu sering dapat menjadi salah satu elemen kejahatan lain. Meskipun biasanya dituntut di pengadilan kriminal, penipuan juga dapat mencoba di bawah hukum sipil.

Berdasarkan beberapa definisi tersebut di atas, dapat dilihat bahwa fraud atau kecurangan memiliki empat Kriteria yang harus dipenuhi, yaitu:
1.      Tindakan tersebut dilakukan oleh pelaku secara sengaja
2.      Adanya korban
3.      Korban menuruti kemauan pelaku
4.      Adanya kerugian yang dialami oleh korban

Karakteristik Kecurangan
Dilihat dari pelaku fraud maka secara garis besar kecurangan bisa dikelompokkan menjadi dua jenis :
1.   Oleh pihak perusahaan, yaitu :
a.   Manajemen untuk kepentingan perusahaan, yaitu salah saji yang timbul karena kecurangan pelaporan keuangan (misstatements arising from fraudulent financial reporting).
b.   Pegawai untuk keuntungan individu, yaitu salah saji yang berupa penyalahgunaan aktiva (misstatements arising from misappropriation of assets).
2.   Oleh pihak di luar perusahaan, yaitu pelanggan, mitra usaha, dan pihak asing yang dapat menimbulkan kerugian bagi perusahaan.

Dalam pengertian luas, Fraud adalah suatu bentuk penipuan yang disengaja/direncakan demi keuntungan dan kemakmuran pribadi/perseorangan atau untuk merusak/mengganggu kehidupan dan kekayaan orang lain. Kata “deception” atau “penipuan” adalah kata kunci untuk mendefinisikan Fraud. Perlu diketahui bahwa FraudSELALU melibatkan penipuan dan kepercayaan. Satu hal yang perlu dicamkan adalah “orang yang paling dipercaya adalah orang yang memiliki peluang paling besar untuk melakukan penipuan kepada Anda.” Mengapa? Ketika
Dari sekian banyak definisi formal tentang Fraud, mungkin yang paling cocok kita jadikan pedoman adalah:
Fraud is a generic term, and embraces all the multifarious means which human ingenuity can devise, which are resorted to by one individual, to get an advantage over another by false representations. No definite and invariable rule can be laid down as a general proposition in defining fraud, as it includes surprise, trickery, cunning, and unfair ways by which another is cheated. The only boundaries defining it are those which limit human knavery.
Fraud adalah sebuah istilah umum dan luas, serta mencakup semua bentuk kelicikan/tipu daya  manusia , yang dipaksakan oleh satu orang, untuk mendapatkan keuntungan lebih dari yang lain dengan memberikan keterangan-keterangan palsu dan telah dimanipulasi. Tidak ada ketentuan dan keharusan untuak menyeragamkan definisi dari Fraud itu sendiri. Fraud juga mengandung pengertian sebagai kejutan, tipuan,kelicikan, dan cara-cara yang tidak sah terhadap pihak yang ditipu. Batasan pendefinisian Fraud adalah segala sesuatu yang berkaitan dengan ketidakjujuran manusia.

15 Oktober 2014

International Perspectives on Reliability (by Thomas Van Hardeveld)

Reliability has become such an integral expectation in our society that it is difficult to imagine a world where things do not work as expected. The first use of the word reliability was by poet Samuel Taylor Coleridge, who bestowed the word on his friend, the poet Robert Southey, to praise his steadfastness.1 From this seemingly insignificant usage of the term, reliability has grown enormously to a broadly accepted, if not entirely understood, property that everyone expects for a wide range of situations. Online searches for reliability and related terms result in thousands of references in papers and manuscripts and literally millions of hits on the Internet.
The Origins of Reliability
The main pillars of reliability are the concepts of probability and statistics, which emerged earlier from the works of two Frenchmen, Blaise Pascal and Pierre de Fermat. The emergence of the need for quality became apparent with mass production and this evolved into statistical quality control and later statistical process control in the 1920s.
Reliability principles and practices became active as an engineering discipline around the 1950s, with a catalyst being the vacuum tube and the many failures that were being incurred. A key moment was the initiation of the Advisory Group on Reliability of Electronic Equipment (AGREE), jointly established in 1952 between the U.S. Department of Defense and the American electronics industry. The AGREE report of June 4, 1957, provided all the armed services with the assurance that reliability could be specified, allocated and demonstrated. The reliability engineering discipline has since come into existence. The first conference on quality control and reliability (of electronics) was held in 1954 and its proceedings evolved into a journal that is still being published by the Institute of Electrical and Electronics Engineers (IEEE) as the IEEE Transactions on Reliability. Another important development was the work of Wallodi Weibull, who pioneered the flexible statistical distribution that now carries his name.
Reliability came into further prominence in the 1960s when many military standards (MIL-STD) and specifications were developed to meet the needs of design and implementation of defense production in the United States. Worldwide industry acceptance of the MIL-STD was noted as the leading source of reliability knowledge and practices. The most well-known reference is the MIL-HDBK-217 Reliability Prediction of Electronic Equipment, which has been adopted in many countries and used by industry organizations as the framework methodology and basis for failure rate estimation. Other methods for testing, reliability growth and reliability analysis have originated from military standards.
Reliability engineering now encompasses statistical methods, techniques, such as failure mode and effects analysis (FMEA) and fault tree analysis, physics of failure, hardware, software and human reliability, probabilistic or quantitative risk assessment, and reliability growth and prediction, to name only a few. Databases of information have been widely established and their use has increased dramatically. Practically every engineering discipline has a focus on these aspects as a key component of business success.
The term reliability now has a much broader meaning and includes not only the specific meaning of reliability as the probability that something may fail, but also related concepts of availability, maintainability, supportability, safety, integrity and a host of other terms. This has led to a proliferation of aggregate terms, such as reliability and maintainability (R&M), reliability, availability and maintainability (RAM), RAMS, where the additional “S” is safety or sometimes supportability, and dependability, which is used by international standards.
International Standardization
In 1965, the International Electrotechnical Commission (IEC) established a technical committee (TC56) to address reliability. The initial title of IEC/TC56 was “Reliability of Electronic Components and Equipment.” In 1980, the title was amended to “Reliability and Maintainability” to address reliability and associated characteristics applicable to products. In 1989, the title was further changed to “Dependability” to better reflect the technological evolution and business needs on a broader scope of applications based on the concept of dependability as an umbrella term. In 1990, following consultations with the International Organization for Standardization (ISO), it was agreed that the scope of TC56’s work should be no longer limited to the electrotechnical field, but address generic dependability issues across all disciplines, thus making IEC/TC56 what is referred to as a horizontal committee.
The scope of IEC/TC56,2 according to its strategic business plan, covers the generic aspects of dependability management, testing and analytical techniques, software and system dependability, lifecycle costing and technical risk assessment. This includes standards and application guides related to topics, such as system and component reliability, maintainability and supportability, dependability of systems, technical risk assessment, integrated logistics support, dependability management and management of obsolescence.
The Concept of Dependability
Dependability is the “ability to perform as and when required.“3 It applies to any physical item, such as a system, product, process, or service, and may involve hardware, software and human actions or inactions. Dependability is a collective set of time-related performance characteristics that coexist with other requirements of a system, such as output, efficiency, quality, safety and integrity, and, in fact, enhances them.4
Dependability does not have a single measure that can be attributed to it, but is instead a combination of relevant measures that vary with application. In a broad sense, dependability is trusting an item to provide its required functionality and expected value and benefits.
Dependability is the term that has been adopted internationally to cover the main attributes of availability, reliability, maintainability and supportability (see Figure 1). Quite often, the term reliability is used as a blanket term to include all these attributes. This proliferation of terms leads to considerable misunderstanding of this important engineering discipline, thus adding to the need for standardization.
The main dependability attributes of an item are:
  • Reliability for continuity of operation;
  • Maintainability for ease of preventive and corrective maintenance actions;
  • Supportability for provision of maintenance support and logistics needed to perform maintenance;
  • Availability for readiness to operate.
Reliability is an inherent result of the design and is sustained by proper operation within prescribed conditions of use and appropriate maintenance. Maintainability is dependent on the system design architecture and technology implementation and is guided by maintenance strategies. It is primarily a function of an item’s design and installation. Supportability is the ability of an item to be supported from a maintenance perspective and consists of two components, maintenance support and the logistics required to deliver that maintenance support. The starting point for supportability is the maintainability of the item, which is then enabled with specific resources and logistics necessary for the use of the item. Availability is the result of a combination of reliability, maintainability and supportability appropriate for the application.
Thus, dependability is a general term that provides a framework for these attributes, as well as others, such as recoverability, durability, operability and serviceability. Safety is not considered a direct attribute of dependability, although the two are closely related. Safety is enhanced when dependability is integrated into the design and operation of an item.
Dependability and Risk and Asset Management
With the recent publication of the ISO55000 suite of standards, an increasing amount of emphasis is being placed on the concept and practice of asset management. Lifecycle management is the basis of asset management, including lifecycle costing and financial aspects. Risk management is also considered a major focus of asset management. Dependability shares most of the aspects of asset management, including risk management, the lifecycle, information management and quality. Without proper consideration of dependability, asset management objectives could not be achieved.
International standards are now leading the way in continuing to improve the very high levels of dependability that have already been achieved.


References
1. Saleh, J.H. and Marais, K. “Highlights from the early (and pre-) history of reliability engineering,” Reliability Engineering and System Safety Volume 91, 2006: 249-256.
2. International Electrotechnical Commission. TC56 Dependability website: www.iec.ch/tc56.
3. International Electrotechnical Commission. “International Electrotechnical Vocabulary - Chapter 191: Dependability and quality of service.” IEC 60050-191.
4. Van Hardeveld, T. and Kiang, D. Practical Application of Dependability Engineering. New York: ASME Press, 2012.

BASELINE ASSESSMENT/AUDIT

PEMBAHASAN BASELINE ASSESSMENT/AUDIT

TOPIK RAPAT    :  PEMBAHASAN BASELINE ASSESSMENT/AUDIT
TEMPAT              :  HOTEL MUTIARA - JL MALIOBORO YOGYAKARTA
TANGGAL           : 12 S/D 13 JULI 2010
PESERTA             : KP, UBP SRL, UBP PRK, UBP SGL, UBP KMJ, UBP SMG, UBP MRC, UBP    
                               GRT, UBP BALI & UBOH BLB.

PEMBUKAAN :
Rapat dibuka oleh DIRPRO PT IP, disampaikan bahwa Baseline Assessment yang diadakan di Yogyakarta ini dan direncanakan dari tanggal 12 s/d 14 Juli 2010 dimaksudkan untuk mendapatkan informasi tentang kondisi peralatan saat ini yang dikelola oleh masing-masing UBP melalui kegiatan Baseline Assessment dengan kaidah-kaidah atau tahapan-tahapan yang sudah ditetapkan sesuai dengan Surat Keputusan Direksi No. 59.K/020/IP/2010. Selanjutnya diharapkan dengan kegiatan Baseline Assessment ini hasil yang didapatkan akan digunakan atau dijadikan referensi didalam membuat rencana pekerjaan dikemudian hari untuk melakukan perbaikan (improvement) dalam rangka meningkatkan parameter-parameter kinerja pengusahaan Unit Pembangkit.

Presentasi oleh Bpk. Budi Santoso (Konsultan), mempresentasikan guideline pelaksanaan Baseline Assessment dengan menjelaskan dasar dan tujuan kegiatan Baseline Assessment, prosedur-prosedur yang harus disiapkan serta pelaporan hasil pelaksanaan Baseline Assessment.

Presentasi oleh Babcock and Wilcock, mempresentasikan hasil assessment Boiler PLTU UBP Suralaya untuk membuat rencana improvement Unit Pembangkit dalam rangka meningkatkan kinerja pengusahaan Unit Pembangkit sesuai dengan target yang akan diinginkan.

UBP-UBP mempresentasikan hasil pelaksanaan Baseline Assessment yang sudah dilakukan sebelumnya dengan memperlihatkan kondisi peralatan-peralatan Unit Pembangkit melalui identifikasi pewarnaan berupa merah, kuning dan hijau.

HASIL PEMBAHASAN :
Kesepakatan-kesepakatan yang dicapai didalam diskusi pembahasan untuk pelaksanaan Baseline Assessment, adalah sebagai berikut :

a. Bahwa pelaksanaan Baseline Assessment secara prosedural didasarkan pada Panduan Tata Kelola dan Identifikasi Risiko Bidang Pembangkitan PLN Tahun 2009, Bab III Peta Kegiatan Proses Bisnis Pembangkitan, item 2 Keandalan Pembangkit, sub item 2.1 Reliability Management dan sub-sub item 2.1.4 Baseline Audit.

b. Koordinator untuk Base Line Assesment di UBP Supervisor Senior Manajemen Asset ( untuk Suralaya di SPS Pengembangan Aset Keandalan )

c.Laporan Base Line Assesment disampaikan ke Tim Base Line Assesment Pembangkit SK no 57.K/020/IP/2010 setiap 3 bulan untuk menggantikan Laporan Unit Prima dan pembahasan setiap 6 bulan sekali

d. Laporan Base Line Assesment Pembangkit dibuat dengan format terlampir.

e. Kesimpulan dalam laporan Base Line Assesment agar dalam format Pie Chart dan narasi

f. Flow pembuatan Base Line Assesment sesuai gambar terlampir.

g. Dalam penyusunan Base Line Assesment Pembangkit menggunakan hierarki Equipment Group system KKS dan format data/tabel seperti Tabel Terlampir. ( khusus laporan Semester I menggunakan format hierarki yang saat ini dibuat )

h. Penyampaian Laporan Base Line Assesment Semester I 2010 segera disampaikan ke Tim Base Line Assesment Pembangkit SK no 57.K/020/IP/2010 cq KDIV Enjinering, paling lambat tanggal 20 Juli 2010. ( hard dan soft copy )

i. Penjelasan hasil kondisi peralatan-peralatan Unit Pembangkit yang sudah dilakukan Baseline Assessment dan diidentifikasikan dengan warna-warna merah, kuning dan hijau, dengan penjelasan berikut :

MERAH berarti :
• Peralatan mengalami kegagalan seluruh fungsi.
• Peralatan atau part yang telah mencapai atau melewati end of lifetime
• Peralatan masih beroperasi namun sudah tidak normal atau tidak memenuhi syarat K3 dan lingkungan  khususnya yang terkait dengan unit

KUNING berarti :
• Peralatan mengalami kegagalan dari sebagian fungsi
• Peralatan masih dapat berfungsi namun kurang memenuhi syarat operasi normal
• Peralatan atau part yang telah mendekati end of life time, khusus untuk peralatan I & C kondisi Obsolete dan sulit untuk mendapatkan spare padanannya.

HIJAU berarti Normal operasi ( dalam batas operasi normal ) 
ACTION PLAN :
- Agar setiap UBP memprogramkan untuk melakukan base line performance test.
- Khusus UBP Suralaya Unit 5 akan melakukan program tersebut pada TW 4 2010

FLOW CHAT SYSTEM ASSET OWNER


FMEA and FMECA Process

Apa yang terjadi bila kotak hitam pada sistem helicopter gagal pada fungsinya ?

Apa efek yang tejadi jika card memory board pada kotak hitam gagal fungsinya?

Apa yang terjadi pada memory board jika componen elektronic nya gagal fungsinya?

Bagaimana dengan kualitas componen,...dst dst

The above example is a bottoms-up approach to a Design FMEA, but a tops-down approach could also be used. Also, the above example shows a hardware FMEA approach, but the system you are analyzing could represent hardware, functions, interfaces or a combination of all these items, which make up your design.


Facts and Tips About FMECA: 

  • FMECAs should begin as early as possible. This allows the analyst to affect the design before it is set in stone. If you start early, as you should, expect to have to redo portions as the design matures.
  • FMECAs take a lot of time to complete.
  • FMECAs require considerable knowledge of system operation necessitating extensive discussions with software/hardware Design Engineering and System Engineering.
  • Spend time developing ground rules with your customer up front.  

The FMECA Analysis Process:
    1) Define the system 
    2) Define ground rules and assumptions 
    3) Construct system block diagrams
    4) Identify failure modes 
    5) Analyze failure effects / causes 
    6) Feed results back into design process 
    7) Classify failure effects by severity 
    8) Perform criticality calculations 
    9) Rank failure mode criticality 
    10) Determine critical items 
    11) Feed results back into design process 
    12) Identify means of failure detection, isolation and compensating provisions 
    13) Document the analysis. Summarize uncorrectable design areas, identify special controls necessary to mitigate risk. 
    14) Make recommendations 
    15) Follow up on corrective action implementation / effectiveness

Be sure and visit our FMEA Examples page for additional FMEA information 
and FMEA examples.

http://www.fmea-fmeca.com/how-is-fmea-done.html

FMEA Introduction

FMECA - Failure Mode, Effects, and Criticality Analysis.
FMEA - Failure Mode and Effects Analysis.
CFMEA – Concept FMEA
DFMEA – Design FMEA
PFMEA – Process FMEA
RPN - Risk Priority Number

Failure Cause (Penyebab kegagalan) (Lalu)
Suatau proses fisik atau kimia , yang mengakibatkan cacat desain, cacat mutu, kesalahan penggunaan atau proses lain yang merupakan alasan dasar untuk kegagalan atau yang dapat terjadinya proses fisik yang mengakibatkan/gagalnya/kerusakan hasil. 
Failure Effect: (efek Kegagalan) (Masa Depan)
Konsekuensi dari failure mode pada fungsi, operasi atau status dari system atau peralatan. 
Failure Mode: (Mode Kegagalan) (Sekarang)
Suatu cara dimana suatau kegagalan diamati, yang menggambarkan cara kegagalan terjadi, dan dampaknya terhadap operasi peralatan.

Pendahuluan FMEA
Suatu yang wajar bila pelangga atau customer menginnginkan permintaan kualitas yang terbaik dan terjamin kehandalannya dari suatu perusahaan penyedia jasa atau produk.
Secara tradisional, kehandalan telah dicapai melalui pengujian ekstensif dan penggunaan teknik seperti pemodelan probabilistik kehandalan. Ini adalah teknik dilakukan pada tahap akhir pembangunan. 
Tantangannya adalah untuk merancang dalam kualitas dan kehandalan di awal siklus pengembangan.

Failure Modes and Effects Analysis (FMEA) adalah metodologi untuk menganalisis masalah keandalan potensial awal dalam siklus pengembangan yang lebih mudah untuk mengambil tindakan untuk mengatasi masalah ini, sehingga meningkatkan kehandalan melalui desain. FMEA adalah digunakan untuk mengidentifikasi mode kegagalan potensial, mengetahui efeknya pada operasi produk, dan mengidentifikasi tindakan untuk mengurangi kegagalan. Langkah penting adalah mengantisipasi apa yang mungkin salah dengan produk. Sementara mengantisipasi setiap Failure Modes tidak mungkin, tim pengembangan harus merumuskan sebagai ekstensif daftar mode potensi kegagalan yang mungkin terjadi.

Penggunaan awal dan konsisten meningkatkan FMEA dalam proses desain memungkinkan engineer untuk merancang keluar kegagalan dan menghasilkan kehandalan, produk diinginkan oleh pelanggan . Meningkatkan FMEA juga dapat menangkap informasi historis untuk digunakan dalam perbaikan produk masa depan. (improvement)

Jenis FMEA :
Ada beberapa jenis meningkatkan FMEA, beberapa jenis fmea yang sering digunakan dari pada yang lain. untuk meningkatkan FMEA yang harus selalu dilakukan setiap kali terjadi kegagalan berarti potensi bahaya atau cedera pada pengguna produk atau layanan pelanggan yang telah yang dirancang diluar perhitungan.
Jenis FMEA adalah:
  1. Sistem - berfokus pada fungsi sistem global 
  2. Desain - berfokus pada komponen dan subsistem 
  3. Proses - berfokus pada proses manufaktur dan perakitan 
  4. Layanan - berfokus pada fungsi layanan 
  5. Software - berfokus pada fungsi software
    Penggunaan FMEA
    Secara historis, enginnering/perancang telah melakukan pekerjaan yang baik untuk mengevaluasi fungsi dan bentuk suatu produk dan jasa dan saat dalam proses tahap desain. Mereka tidak selalu melakukannya dengan baik atau sempurna , untuk perancangan kehandalan dan kualitas. Sering kali engineer menggunakan faktor-faktor keselamatan sebagai cara untuk memastikan bahwa desain tersebut akan bekerja dan melindungi 

    "Sebuah faktor keamanan yang besar tidak selalu diterjemahkan ke dalam produk yang handal Sebaliknya, (Failure Analysis Beats Murphy's Law Mechanical Engineering , September 1993)

    Adalah FMEA telah digunakan oleh desain engineer sebagai alat yang dapat membantu dalam menyediakan produk/jasa yang handal, aman, dan produk menyenangkan pelanggan. Proses FMEA membantu desain engineer untuk mengidentifikasi produk yang memiliki potensial kegagalan, dan saat ini FMEA di gunakan untuk:

    1. Mengembangkan persyaratan produk atau proses yang meminimalkan kegagalan-kegagalan yang sangat memungkinan 
    2. Mengevaluasi persyaratan yang diperoleh dari pelanggan atau peserta lain dalam proses desain untuk memastikan bahwa persyaratan tidak memperkenalkan potensi kegagalan. 
    3. Mengidentifikasi karakteristik desain yang berkontribusi terhadap kegagalan dan desain yang keluar dari sistem atau setidaknya meminimalkan efek yang dihasilkan. 
    4. Metode Mengembangkan dan prosedur untuk mengembangkan dan menguji produk/ proses untuk memastikan bahwa kegagalan telah berhasil dieliminasi. 
    5. Melacak dan mengelola risiko potensial dalam desain. Pelacakan risiko berkontribusi pada pengembangan perusahaan dan keberhasilan produk masa depan . 
    6. Dapat memastikan bahwa setiap kegagalan yang akan dapat terjadi tidak akan melukai atau berdmapak serius terhadap pelanggan dari suatu produk / proses.
      Manfaat FMEA
      FMEA ini dirancang untuk membantu engineer untuk meningkatkan kualitas dan keandalan desain. dengan menggunakan FMEA, engineer dapat beberapa manfaat. 
      Antara lain, manfaat ini meliputi:
      1. Meningkatkan produk / proses kehandalan dan kualitas 
      2. Meningkatkan kepuasan pelanggan 
      3. Awal identifikasi dan eliminasi potensi produk / proses "failure mode" 
      4. Prioritaskan produk / pada proses kekurangan atau yg tidak efisien 
      5. Capture engineering / pengetahuan organisasi 
      6. Menekankan pencegahan masalah 
      7. Dokumen risiko dan tindakan yang diambil untuk mengurangi risiko 
      8. Memberikan fokus untuk pengujian pada peningkatan dan pengembangan 
      9. Meminimalkan perubahan diakhir atau modifikasi dengan biaya yang terkait 
      10. Katalis untuk kerjasama dan pertukaran ide antara fungsi
        Pengaturan Waktu FMEA 
        FMEA adalah dokumen hidup. Sepanjang perubahan siklus pengembangan produk dan pembaruan dilakukan terhadap produk dan proses. Perubahan ini sering memperkenalkan "failure mode" baru. Oleh karena itu penting untuk meninjau dan / atau memperbarui FMEA bila:
        1. Sebuah produk baru atau proses sedang dimulai (pada awal siklus).
        2. Perubahan yang dibuat untuk kondisi operasi produk atau proses diharapkan berfungsi saat modifikasi
        3. Sebuah perubahan fmea dibuat baik buat produk atau desain proses. Produk dan proses yang saling terkait. Ketika desain produk terjadi proses yang dipengaruhi oleh perubahan dan sebaliknya.
        4. Peraturan baru yang dilembagakan.sebagai bahan evaluasi
        5. Masukan dari pelanggan saat mengindikasikan masalah baru dalam produk atau proses.
        Prosedur membuat lembar FMEA 
        Proses untuk melakukan suatu FMEA adalah mudah. Langkah-langkah dasar diuraikan di bawah ini.
        1. Jelaskan produk / proses dan fungsinya. Pemahaman tentang produk atau proses di bawah pertimbangan adalah penting untuk memiliki diartikulasikan secara jelas. Pemahaman ini menyederhanakan proses analisis dengan membantu engineer mengidentifikasi produk / proses dalam fungsi dimaksud dan mana yang berada di luar. Sangat penting untuk mempertimbangkan baik disengaja dan tidak disengaja karena kegagalan produk seringkali berakhir dalam litigasi, yang berakibat biaya mahal dan memakan waktu.
        2. Buat Blok Diagram dari produk atau proses. Sebuah diagram blok dari produk /proses harus dapat dikembangkan. diagram ini menunjukkan komponen utama atau langkah-langkah proses sebagai blok dihubungkan oleh garis-garis yang menunjukkan bagaimana komponen atau langkah-langkah terkait. Diagram menunjukkan hubungan logis dari komponen dan membentuk struktur .FMEA dapat dikembangkan. dengan membuat sistem coding untuk mengidentifikasi elemen sistem. Diagram blok harus selalu disertakan dengan bentuk FMEA.
        3. Lengkapi header di lembar kerja Form FMEA:. Produk / Sistem, Subsys. / Assy,Komponen, Lead Desain, Disiapkan Oleh, Tanggal, Revisi (huruf atau angka), dan Tanggal Revisi. Memodifikasi judul yang diperlukan.
        4. Gunakan diagram yang disiapkan diatas untuk memulai item daftar atau fungsi. Jika item daftar komponen sudah secara logis dibawah subsistem hubungkan berdasarkan pada diagram blok.
        5. Identifikasi 'Failure Mode". Sebuah  'Failure Mode"  didefinisikan sebagai cara di mana komponen, subsistem, sistem, proses, dll berpotensi gagal untuk memenuhi tujuan dari desain.  Contoh "failure mode" potensial adalah: 
          • Corrosion
          • Hydrogen embrittlement 
          • Electrical Short or Open
          • Torque Fatigue 
          • Deformation 
          • Cracking 
        6. Sebuah  "failure mode"  dalam satu komponen dapat berfungsi sebagai penyebab kegagalan dalam modus komponen lain. Setiap kegagalan harus tercantum dalam istilah teknis.  "failure mode"  harus terdaftar untuk fungsi dari setiap komponen atau langkah proses. Pada titik ini  "failure mode"  harus mengidentifikasi apakah atau tidak kegagalan mungkin terjadi. Melihat produk sejenis atau proses dan kegagalan yang telah didokumentasikan adalah titik awal yang sangat baik. 
        7. Jelaskan dampak yang timbul dari "failure mode". Untuk setiap "failure mode"diidentifikasi oleh engineering untuk menentukan apa efek akhirnya. Efek kegagalan didefinisikan sebagai hasil dari "failure mode" pada fungsi dari produk / proses seperti yang dirasakan oleh pelanggan. Mereka harus dijelaskan dalam hal apa yang pelanggan mungkin rasakan pada pengalaman yang terjadi "failure mode" harus diidentifikasi terjadi. Perlu pikiran internal maupun pelanggan eksternal. Contoh efek kegagalan meliputi: 
          • Injury to the user
          • Inoperability of the product or process
          • Improper appearance of the product or process
          • Odors
          • Degraded performance
          • Noise 
        8. Membuat peringkat numerik untuk tingkat Saverity efek. Sebuah skala industri umum standar menggunakan 1 untuk mewakili tidak ada efek dan 10 untuk menunjukkan sangat berat dengan kegagalan mempengaruhi operasi sistem dan keamanan tanpa peringatan. Maksud dari peringkat ini adalah untuk membantu analis menentukan apakah kegagalan akan menjadi gangguan kecil atau kejadian bencana kepada pelanggan. Hal ini memungkinkan engineering untuk memprioritaskan yang pertaman pada failure yang menjadi isu-isu besar dan nyata 
        9. Menetapkan Tanggung Jawab dan Penyelesaian Tanggal Sasaran tindakan ini. Hal ini membuat tanggung jawab yang jelas dan memfasilitasi kemudahan untuk pelacakan.
        10. Tunjukkan Tindakan Diambil. Setelah tindakan-tindakan telah diambil, kembali menilai Saverity, probabilitas dan deteksi dan meninjau RPN revisi. Apakah ada tindakan lebih lanjut yang diperlukan?
        11. Update FMEA sebagai perubahan desain atau proses, perubahan penilaian atau informasi baru menjadi dikenal   
        .Failure Modes and Effects Analysis (FMEA) Example 2

        FMEA RPN

        Severity (keparahan) 
        Rumusan yang mempertimbangkan konsekuensi yang terburuk, yang mungkin akan terjadi dari kegagalan yang diklasifikasikan oleh tingkat cedera, kerusakan harta benda, kerusakan sistem dan kehilangan kesempatan yang dapat terjadi 

        Single Point Failure: 
        Item Failure yang dapat mengakibatkan kegagalan system dan tidak menggunakan sistem redundansi atau prosedur operasional alternatif. 

        Risiko Nomor Prioritas (RPN) 
        Menyediakan pendekatan evaluasi alternatif untuk Analisis Kekritisan. Jumlah prioritas risiko memberikan perkiraan numerik kualitatif risiko desain. 
        RPN didefinisikan sebagai produk dari tiga faktor independen dinilai : 
        · S= Saverity (tingkat keparahan) 
        · O= Occurrence (tingkat kejadian) 
        · D= Detection (Deteksi).
        Rumus : 
        RPN = (S) * (O) * (D)

        Saverity (tingkat keparahan) 
        Tingkat keparahan adalah perkiraan subjektif numerik dari seberapa parah pelanggan (pengguna berikutnya) atau pengguna akhir yang akan merasakan EFEK kegagalan. 

        O= Occurrence (tingkat kemungkinan kejadian)
        Tingakt waktu atau kemungkinan terjadinya kadang-kadang disebut, adalah estimasi subjektif numerik dari kemungkinan yang menyebabkan, jika terjadi, akan menghasilkan failure mode dan efek khususnya. 

        D= Detection (Deteksi).
        Deteksi kadang-kadang disebut EFEKTIVITAS. Ini adalah perkiraan subjektif numerik efektivitas kontrol untuk mencegah atau mendeteksi penyebab atau failure mode sebelum kegagalan mencapai pelanggan. Asumsinya adalah yang menyebabkan telah terjadi.

        Risk Priority Number (RPN) adalah ukuran yang digunakan ketika menilai risiko untuk membantu mengidentifikasi "critical failure modes" terkait dengan desain atau proses. Nilai RPN berkisar dari 1 (terbaik mutlak) hingga 1000 (absolut terburuk). RPN FMEA adalah umum digunakan dalam industri dan agak mirip dengan nomor kekritisan yang digunakan. Di bawah ini menunjukkan faktor-faktor yang membentuk RPN dan bagaimana hal itu dihitung untuk setiap "failure modes" .
        Assessing Risk (menilai Risiko)
        Beberapa kata peringatan ketika menggunakan nilai RPN untuk menilai risiko -RPNs tidak memiliki nilai atau arti pada diri mereka sendiri. Meskipun benar bahwa nilai-nilai RPN yang lebih besar biasanya mengindikasikan "failure mode" yang lebih kritis, hal ini tidak selalu terjadi. Sebagai contoh, di sini kita memiliki tiga kasus dimana RPN adalah identik, tetapi jelas kasus kedua akan menjamin perhatian yang besar

        Sebagai aturan umum, setiap "failure mode" yang memiliki efek yang dihasilkan Saverity 9 atau 10 akan memiliki prioritas utama. (Severity diberi nilai tinggi adalah paling berat ketika menilai risiko. Selanjutnya, Severity dan Kemungkinan Kejadian (S x O) dikombinasikan, hasilnya menjadi untuk dasar menilaian, yang merupakan kekritisan peralatan atau sistem tersebut.
        Di bawah ini adalah contoh lain RPN mengingatkan kita bahwa kita perlu berhati-hati untuk tidak menilai risiko murni berdasarkan nilai RPN. Disini "failure mode" dengan nilai RPN terendah sebenarnya yang paling penting. Berhati-hatilah untuk memberi "nilai ambang batas" pada saat memberi nilai risiko untuk RPN , karena hal ini dapat menyebabkan kesalahan mahal. Di bawah ini kita melihat bahwa # 1 adalah yang paling kritis bahkan meskipun memiliki nilai RPN terendah, kemudian # 2, dan kemudian # 3.

        Singkatnya, tidak selalu "failure mode" akan mendapatkan nilai RPN tinggi dengan nilai saverity yang tinggi, tanpa mempertimbangkan nilai-nilai mereka secara keseluruhan RPN. (nilai O= Occurrence dan nilai D= Detection )

        FMEA/FMECA Benefits

        This page describes some of the benefits that can be derived by performing various types of FMEA / FMECA.

        FMEA / FMECA - General Benefits:

        • Prevention Planning
        • Identifies change requirements
        • Cost reduction
        • Increased throughput
        • Decreased waste
        • Decreased warranty costs
        • Reduce non-value added operations
        Concept FMEA:
        • Helps select the optimum concept alternatives, or determine changes to design specifications
        • Identifies potential failure modes caused by interactions within the concept
        • Increases the likelihood all potential effects of a proposed concept’s failure modes are considered.
        • Identifies system level testing requirements
        • Helps determine if hardware system redundancy may be required within a design proposal
        Design FMEA:
        • Aids in the objective evaluation of design requirements and designalternatives
        • Aids in the initial design for manufacturing and assembly requirements
        • Increases the probability that potential failure modes and their effects have been considered in the design/development process
        • Provides additional information to help plan thorough and efficient 
        • test programs.
        • Develops a list of potential failure modes ranked according to their effect on the customer. Establishes a priority system for design improvements.
        • Provides an open issue format for recommending and tracking risk reducing actions.
        • Provides future reference to aid in analyzing field concerns.
        Process FMEA:
        • Identifies potential product related process failure modes.
        • Assesses the potential customer effects of the failures.
        • Identifies the potential manufacturing or assembly process causes and identifies process variables on which to focus controls or monitoring.
        • Develops a ranked list of potential failure modes, establishing a priority system for corrective action considerations.
        • Documents the results of the manufacturing or assembly process.
        • Identifies process deficiencies
        • Identifies confirmed critical characteristics and/or significant characteristics
        • Identifies operator safety concerns
        • Feeds information on design changes required and manufacturing feasibility back to the designers.

        SYSTEM OWNER